Oligophrenin-1: the link between calcium-regulated exocytosis and compensatory endocytosis in neuroendocrine cells

نویسندگان

  • Catherine Estay-Ahumada
  • Stéphane Ory
  • Stéphane Gasman
  • Sébastien Houy
چکیده

In neuroendocrine cells, hormones and neuropeptides are released from large-dense core vesicles (secretory granules) by calcium-regulated exocytosis. Following exocytosis, compensatory uptake of membrane is required to maintain membrane homeostasis and allow recycling of secretory vesicle membranes. How these cells initiate and regulate this compensatory endocytosis remains poorly understood. Our recent data suggests that oligophrenin-1 (OPHN1) is a link coupling calcium-regulated exocytosis to compensatory endocytosis of secretory granules in the adrenal chromaffin cells (Houy et al., 2015, J Neurosci. 2015, 35:11045-55). Here, we highlight the major evidence and discuss how OPHN1 could couple these two processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oligophrenin-1 Connects Exocytotic Fusion to Compensatory Endocytosis in Neuroendocrine Cells.

Oligophrenin-1 (OPHN1) is a protein with multiple domains including a Rho family GTPase-activating (Rho-GAP) domain, and a Bin-Amphiphysin-Rvs (BAR) domain. Involved in X-linked intellectual disability, OPHN1 has been reported to control several synaptic functions, including synaptic plasticity, synaptic vesicle trafficking, and endocytosis. In neuroendocrine cells, hormones and neuropeptides s...

متن کامل

Phospholipid scramblase-1-induced lipid reorganization regulates compensatory endocytosis in neuroendocrine cells.

Calcium-regulated exocytosis in neuroendocrine cells and neurons is accompanied by the redistribution of phosphatidylserine (PS) to the extracellular space, leading to a disruption of plasma membrane asymmetry. How and why outward translocation of PS occurs during secretion are currently unknown. Immunogold labeling on plasma membrane sheets coupled with hierarchical clustering analysis demonst...

متن کامل

Exocytosis and Endocytosis in Neuroendocrine Cells: Inseparable Membranes!

Although much has been learned concerning the mechanisms of secretory vesicle formation and fusion at donor and acceptor membrane compartments, relatively little attention has been paid toward understanding how cells maintain a homeostatic membrane balance through vesicular trafficking. In neurons and neuroendocrine cells, release of neurotransmitters, neuropeptides, and hormones occurs through...

متن کامل

The juxtamembrane region of synaptotagmin 1 interacts with dynamin 1 and regulates vesicle fission during compensatory endocytosis in endocrine cells.

Synaptotagmin 1 (Syt1) is a synaptic vesicle protein that is important for the kinetics of both exocytosis and endocytosis, and is thus a candidate molecule to link these two processes. Although the tandem Ca(2+)-binding C2 domains of Syt1 have important roles in exocytosis and endocytosis, the function of the conserved juxtamembrane (jxm) linker region has yet to be determined. We now demonstr...

متن کامل

Systematic spatial mapping of proteins at exocytic and endocytic structures

Vesicular secretion (exocytosis) involves the release and then compensatory recycling of vesicle components through endocytosis. This fundamental cellular process is controlled by the coordinated assembly and interactions of dozens of proteins at the plasma membrane. Understanding the molecular composition of individual exocytic and endocytic structures and their organization across the plasma ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016